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Fig; 4 Limiting view factor.

From Fig. 1 the equation for 72 is

2 = y2[(y/y0)? sec2d — 2(y/y) {1 + (x1/y1) tand cosp} +
(m/y)? + 1] (B)

Equation (5) is substituted into Eq. (4) and the resulting
expression is integrated. The angle at the limit of sight on
the conical surface is

¢o = cosI[(yi/x1) tanb] (6)

Substituting Eq. (6) for ¢ and putting the solution in
nondimensional form yields

sinf _ secl _
Foap s, = r tan l[m (7 — 1):| +
1 I:E + tan0]1/2 _

- tan™! T — tand
(1 — 1)? + E* — %% tan? %
[(7 tanf + E)2 4+ (7 — 1)2]¥2
[(7 tan8 — E)? + (7 — 1)2]v2

tan 1 “:(7'7 tang + E)* + (7 — 1)2]1/2 (E — tanf\1?
an (7 tanf — E)? + (5 — 1)2 E + tand

)

where 7 = y/y1 and F = z1/y1. Equation (7) is the ex-
pression for the view factor from the differential area to the
conical surface. The only restrictions on this equation are
that E > tanf and y > 0.

On the conical boundary (E = tan 6), Eq. (7) reduces to

Faa s, = sing/2 + £ 8

In some applications, the limiting value of the view factor
as the cone length approaches infinity is of interest. From
Eq. (7)

. sinf | 1 E + tanf |V
[ — -1 — p—
I Fosas = 5=+ T tan [E - tan0:|
11 — tan2f E — tan@ ]2
- —1
7 1 + tan2f tan [E + tan@] ®

Figure 3 shows graphs of the view factor vs the distance
down the cone axis for cone half-angles of 10°, 20°, 30°, and
40°. This distance is measured from the differential area (at
Y = 0) and nondimensionalized with respect to the cone radius
at the differential-area y position. Y/R, is a more con-
venient parameter than 5. The relation between the two
nondimensional distances is

Y/R, = (3 — 1)/tan® (10)

Figure 4 is a graph of the limiting view factor (Eq. 10)
vs the differential-area position factor E for various cone
half-angles. This graph shows that for E > 10 increasing
has little effect on the limiting view factor.
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Conclusions

The analysis presents a more useable result than the Bobco
and Morizumi approaches because it yields an algebraic
equation for the view factor. This enables rapid calculation
of view factors with the slide rule or calculation machine.
All of the data presented in Figs. 3 and 4 were obtained from
a digital computer program that required less than 2 min
execution time.
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Dynamic Plastic Response of
Finite Bars

E. R. Woopn* axp T. H. Liut
Georgia Institute of Technology, Atlanta, Ga.

Introduction

HIS Note examines the dynamie response of a fixed-

free, finite bar subjected to an axially applied impact
load where the load is sufficiently high to result in plastic
strains (Fig. 1). The material of the bar is represented by a
bilinear static stress-strain diagram where the elastic and
plastic moduli are denoted by E, and Eji, respectively. By
varying the slope of the plastic region of this curve (E,/Ey),
it is possible to explore the effects of strain hardening on this
problem, including the limiting case of elastic wave propaga-
tion in which E:/E, is equal to one.

Analysis

In the problem considered, the time history of applied
normal stress at the end z = 0 is given by

s(0) = 0,6 <0 1)
o) =P, t>0 @)

where P > oy (yield stress). In this example the applied
stress was selected such that P = 409. The boundary condi-
tion at the fixed end of the bar is that the particle velocity is
zero at x = L for all time, or

o(Lt) =0 3

For one-dimensional plastic waves the rate-dependent
theory of Malvern!-? results in the following set of quasilinear
partial differential equations:

do/ox = pdu/dt @
Qe/0t = dv/dx (5)
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Fig.1 The problem considered.
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E,d¢/0t = 90/t + g(a,€) (6)

where o and e are the engineering stress and strain, » is the
particle velocity, Ey is Young’s modulus, p is the initial
density, ¢ is the time, and z is the distance from the origin,
where the origin represents the undisturbed position of the
free end of the bar.

The recurring wave reflections that occur from each end
of a finite bar result in repeated dynamic loading and un-
loading for each point along the bar’s length. This means
that a definite elastic-plastic loading-unloading eriteria must
be established. This question has been considered by Lub-
liner® and Cristescu? in relation to the Sokolovski>-Malvern
theory given here, and for more general constitutive relations
as well. As set forth by Lubliner,® Eq. (6) for loading and
unloading may be written

Ey 0¢/0t = 30 /0t + (g(o,€)) )

where

2,2>0
=170 ®

This simply states that during dynamic loading and un-
loading the elastic stress-strain relation governs whenever,
at a given location, the stress falls below the static stress-
strain curve [o < f(¢)]. Otherwise, the governing equation
will be the rate-dependent relation given by Eq. (6). In
Eq. (6) the rate-dependent term is applied in the form sug-
gested by Malvern.2 That is,

9(0,6) = Eo0e"/0t = klo — J(e)] &)

where o is the instantaneous stress, f(e) is the stress at the
static test, and £ is a material constant that may be selected
empirically to match the strain-rate characteristics of a speci-
fied material. For a bilinear stress-strain law, the function
g(a,€) is expressed as

y(O’,E) = k[(f - 0'0(]. el El/Eo) - Elf] (10)

Equations (4-6) comprise a hyperbolic system of quasi-
linear partial differential equations. These may be com-
bined and reduced to total differentials along characteristic
lines, then integrated numerically. The general method of
analysis, including treatment of jump conditions across the
wave front, is discussed in a related paper on semi-infinite
bars by Wood and Phillips.®

The manner by which initial and subsequent wave reflec-
tions are included in this analysis of a finite bar is shown in
Fig. 2. Once the stress is applied, it propagates toward the
fixed end with the wave front moving at the elastic velocity
(Bo/p)¥2. This is indicated by the line OBA in the figure.
At point A the first reflection occurs at the fixed end. The
initiation of subsequent reflections is indicated by points
N, R, W, and Z. We observe from Fig. 2 that region 1
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Fig. 2 Characteristics diagram showing method of
analysis for wave reflections.

represents the stress-free undisturbed region, region II is the
initially stressed region with no reflected waves, whereas
regions 111, IV, V, and all subsequent regions are those where
wave reflection and interaction is oceurring.

The procedure carried out in the analysis was to first per-
form numerical integration in region IT to determine stresses,
strains, and particle velocities at all points. This yielded
B and C (see Fig. 2) as known values. Stresses and strains
at point A could then be determined from the following
conditions:

along dx/dt = ¢co, do — pcodv = —g(o,€)dt (11)
at point A(x = L), o(L,t) = 0, do = Eyde (12)

The corresponding finite-difference equations are
g4 — op — peo(va — ve) = —i(ga + gn)Al (13)
va=0,04 = Eoes (14)

where the elastic stress-strain relation at point A results from
the instantaneous loading at this point due to the reflection
of a sharp wave front. With A, B, and C known, D is
readily obtained from the basie finite-difference equations
(see Ref. 6). All points along AM can now be found. Re-
gion III has thus been linked with region II. The remaining
calculations for region I1T are carried out in a routine manner.
By a similar approach region IV can be joined to region III.
Here, first N would be found, then K from M, N, and Q.
This now makes it possible to find the values along the char-
acteristic NT making use of known values along characteristic
MS.

Following this procedure, each region is linked to the pre-
ceding. For the calculations, the bar was subdivided into
twelve equal lengths and a time increment selected where
kAt = 1. This resulted in stress, strain, and velocity values
being determined for 78 points for each triangular region
shown by Fig. 2.

Numerical Results

Representative results showing the influence of strain
hardening on the dynamic response are given in Fig. 3.
Shown is a plot of stress as a function of z, distance along
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the bar, and ¢, time for three cases. Figure 3a gives the
dynamic response for the case when the material is very
plastic, that is, E1/E, = 4. If we increase strain hardening
such that the material is nearly elastic (E\/E, = &), then we
obtain the response shown in Fig. 3b. Finally, for the
elastic case (F:/E, = 1) the results are as given in Fig. 3c.
The elastic solution shown by Fig. 3¢ can also be obtained
by a normal mode solution.

Study of Fig. 3 indicates several interesting trends. As
the ratio Ei/E, increases (an increase in strain hardening),
we observe that the character of the response changes signifi-
cantly. Also, if we examine the time history of stress at the
fixed end of the bar (x = L), we note that the time required
for the stress to build up to its maximum value increases as
the material becomes more plastic. This is due to the con-
tribution of the rate-dependent term [see Eq. (9)] which in-
creases (for a given stress-strain level) as the ratio Ei/E, de-
creases. We find that in the limit when the material becomes
perfectly plastic (Ei/Ey, — 0), the time required for the stress
at the fixed end to build up becomes infinite. In this case,
the bar cannot support a stress in excess of the yield stress.

Of interest to the designer is the result that as the material
becomes more plastic there is also a reduction in the maximum
stress attained immediately after impact. Recalling that
the applied stress is a/0p = 4.0, we find for the elastic case
(Ey/Ey = 1.0) that the fixed end stress doubles under dy-
namic loading to /0y = 8.0 in accordance with classical
theory. But, as the material becomes more plastic, there is
an increasing reduction in this peak stress value, which
approaches o/g¢ = 4.0 as a limit, for all but perfectly plastie
materials.

The computer results plotted in Fig. 3 also indicate that
after initial stress buildup, the stress at each point on the
bar oscillates periodically. Oscillations occur at the funda-
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" Fig. 3 Three-dimensional
plots of stress in the La-
grangian x-i plane comparing
the elastic and two plastic

solutions.

mental frequency of the bar. (For the problem considered,
t = 48/k or w = wk/24.) Plastic deformation occurs during
the initial stress buildup period, whereas subsequent oscilla-
tions are due to a residual elastic wave that travels back and
forth along the bar. The oscillation occurs about a mean
value o/ = 4.0, which is the applied stress at the free end.
Note that as the material becomes more plastic there is a
reduction in the amplitude of the oscillating stress. Observe
that the shape of the resulting periodie function (for a given
position z of the bar) varies considerably with the degree of
strain hardening. As the material becomes more plastic it
is noted there is less contribution of higher modes to the
response. It was found for ratios of Ei/E, less than 4 that
the steady-state response resulting from a step-load input
was essentially first mode in character.
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